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Abstract 
 

Atlases of the human brain, in health and disease, 
provide a comprehensive framework for understanding 
brain structure and function. The complexity and 
variability of brain structure, especially in the gyral 
patterns of the human cortex, present challenges in 
creating standardized brain atlases that reflect the 
anatomy of a population. This paper introduces the 
concept of a population-based, disease-specific brain 
atlas that can reflect the unique anatomy and physiology 
of a particular clinical subpopulation. Based on well-
characterized patient groups, disease-specific atlases 
contain thousands of structure models, composite maps, 
average templates, and visualizations of structural 
variability, asymmetry and group-specific differences. 
They correlate the structural, metabolic, molecular and 
histologic hallmarks of the disease. Rather than simply 
fusing information from multiple subjects and sources, 
new mathematical strategies are introduced to resolve 
group-specific features not apparent in individual scans. 
High-dimensional elastic mappings, based on covariant 
partial differential equations, are developed to encode 
patterns of cortical variation. In the resulting brain atlas, 
disease-specific features and regional asymmetries 
emerge that are not apparent in individual anatomies. 
The resulting probabilistic atlas can identify patterns of 
altered structure and function, and can guide algorithms 
for knowledge-based image analysis, automated image 
labeling, tissue classification, data mining and functional 
image analysis.  
 
 

1  Introduction  
 
Advanced brain imaging technologies now provide a 
means to investigate disease and therapeutic response in 
their full spatial and temporal complexity. Imaging studies 
of clinical populations continue to uncover new patterns 
of altered structure and function, and novel algorithms are 
being applied to relate these patterns to cognitive and 
genetic parameters. As imaging studies expand into ever-
larger patient populations, population-based brain atlases 

will offer a powerful framework to synthesize the results of 
disparate imaging studies. These atlases require novel 
analytical tools to fuse data across subjects, modalities, 
and time, enabling detection of group-specific features not 
apparent in individual patients’ scans. Once built, these 
atlases can be stratified into subpopulations to reflect a 
particular clinical group. The disease-specific features they 
resolve can then be linked with demographic factors such 
as age, gender, handedness, as well as specific clinical or 
genetic parameters [1].  

Imaging algorithms are rapidly increasing the flexibility 
of digital brain templates. Deformable brain atlases [2] are 
adaptable brain templates that can be individualized to 
reflect the anatomy of new subjects. Probabilistic atlases 
[1,3,4] store detailed information on structural and 
functional variability. These atlases can be used to detect 
altered structure and function in an individual or group, 
and the information they store on anatomic variation can 
guide automated image labeling, data mining, and 
functional image analysis. 

Despite the interest in relating population-based 
functional, anatomic, histologic and molecular data in 
diseases such as Alzheimer’s disease and schizophrenia, 
current population-based brain templates poorly represent 
the anatomy of these clinical populations. Because the 
anatomy is altered in these diseases (reviewed in [5,6]), it is 
desirable to register and correlate data in an atlas 
coordinate system that reflects the morphology of the 
clinical population so that least distortion is applied. The 
result is an image analysis framework that relates the 
structural, functional, metabolic and pathologic 
characteristics of the disease in a 3D reference coordinate 
system. The atlas also supports the exploration of linkages 
between these imaging data and therapeutic response, as 
well as dynamic data on local anatomic change [6,7] and 
cognitive and behavioral parameters ([8]; Fig. 1). 
     Central to the construction of a disease-specific atlas is 
the creation of averages, templates and models to describe 
how the brain and its component parts are organized, and 
how they are altered in disease. Statistical models are 
created to reveal how major anatomic systems are affected, 
how the pathology progresses, and how these changes 
relate to



 
 

Figure 1. Elements of a Disease-Specific Atlas. This schematic shows the types of maps and models contained in a disease-
specific brain atlas. This atlas represents an Alzheimer’s Disease population. To construct the atlas, databases of structural 
imaging data are used to develop detailed models of cortical structure and anatomic subsystems. These models are 
statistically combined to create group average models that can be compared with averages from elderly normal subjects 
matched for age, gender, handedness and educational level. Patterns of 3D structural variability, asymmetry, and disease-
specific differences are also computed from the anatomic data. A well-resolved average image template for the patient 
population (Continuum-Mechanical Atlas, center right) is created by (1) using high-dimensional surface-based 3D warping 
to reconfigure each subject’s anatomy to match an average set of 84 surfaces defined for the group, and then (2) voxel-wise 
averaging of normalized image intensities across the group. Surface-based warping ensures that boundaries in the mean 
image template are consistent with the averaged anatomic surface data contained in the atlas. Given this mean image template, 
intensity-based image registration approaches can then also be used to automatically align MRI, PET and SPECT (magnetic 
resonance imaging and positron emission/single photon emission computed tomography) data with the atlas. The resulting 
coordinate framework links in vivo metabolic and functional data with fine-scale anatomy and biochemistry (top right). In 
recent studies [9,10], histologic and biochemical maps of post mortem markers, including beta-amyloid protein distribution 
and neurofibrillary tangle (NFT) staining density, were correlated with in vivo metabolism. Using the algorithm of [11] 
(warped image), distorted tissue sections were elastically warped back to their configuration in the cryosection blockface 
(top row). A further 3D registration projected the data into pre-mortem MRI and co-registered PET data (top right). 
------ 
demographic or genetic factors. To create templates that 
reflect the morphology of a diseased group, specialized 
strategies are required for population-based averaging of 
anatomy [2,12-14]. In one approach [5], sets of high-
dimensional elastic mappings, based on the principles of 
continuum mechanics, reconfigure the anatomy of a large 
number of subjects in an anatomic image database. These 
3D deformation fields are used to create an anatomical 

image template with highly-resolved structures in their 
mean spatial location. The mappings also generate a 
detailed local encoding of anatomic variability, with up to a 
billion parameters [2,15]. The resulting variability 
parameters are stored as a tensor field providing automated 
identification of anatomical structures in new patients’ 
scans, and descriptions of disease-specific characteristics 
[4]. 



 
 

 
  

In this paper, we illustrate our atlasing approach by 
using high-dimensional transformations to create a 
disease-specific image template and a variety of average 
anatomical maps for an Alzheimer’s disease population. 
The resulting mean anatomic templates reveal patterns of 
cortical variation, asymmetries and disease-related 
differences that are not apparent in individual anatomies, 
and illustrate the potential of the atlasing approach.   
 
2   Methods 
 

Imaging. High-resolution 3D (2562×124) T1-weighted 
fast SPGR (spoiled GRASS) MRI volumes were acquired 
from 26 subjects diagnosed with mild to moderate 
Alzheimer’s Disease (AD; NINCDS-ADRDA criteria) and 
20 elderly control subjects. All subjects were matched for 
age (75.8±1.7 yrs.), educational level (15.2±0.4 yrs.), 
gender, and handedness (all 46 right-handed). All patients 
were matched for disease severity (mean Mini-Mental 
State Exam score: 20.0±0.8, comparable with other studies 
of mild AD). Scan acquisition parameters were TR/TE 
14.3/3.2 msec, flip angle 35°, NEX=1, FOV 25cm, with 
contiguous 1.5-mm thick slices (no interslice gap) covering 
the entire brain. Image data were initially transformed into 
a Talairach-based coordinate system [16] which (1) places 
the anterior commissure (AC) at the origin; (2) vertically 
orients the midsagittal plane; and (3) horizontally orients 
the AC-PC line. Aligned MR volumes were corrected for 
non-uniformity of MR signal intensity [17], and high-
resolution surface models of the cerebral cortex were 
extracted, as described previously [3,18].  

Cortical Patterns.  36 major external fissures and sulci 
in the brain were manually outlined on highly magnified 
surface-rendered images of each cortical surface. Detailed 
anatomic criteria were applied as set out in [3] and the Ono 
sulcal atlas [19] to define sulci whose topological 
consistency has been demonstrated across normal 
populations. In both brain hemispheres, 3D curves were 
drawn to represent superior and inferior frontal, central, 
postcentral, intraparietal, superior and inferior temporal, 
collateral, olfactory and occipito-temporal sulci, as well as 
the Sylvian fissures. Additional 3D curves were drawn in 
each hemisphere to represent gyral limits at the 
interhemispheric margin [3]. Stereotaxic locations of 
contour points derived from the data volumes were 
redigitized to produce 36 uniformly parameterized cortical 
contours per brain, representing the primary gyral pattern 
of each subject [3]. 

Gyral Pattern Matching. Due to variations in gyral 
patterning, cortical variability is severely underestimated 
unless elements of the gyral pattern are matched from one 
subject to another (cf. [3,4,11,20-24]). This matching is also 
required for cortical averaging; otherwise, corresponding 

gyral features will not be averaged together. To find good 
matches among cortical regions we perform the matching 
process in the cortical surface's parametric space, which 
permits more tractable mathematics (Fig. 2; [3,4,24]). This 
vector flow field in the parametric space indirectly specifies 
a correspondence field in 3D, which drives one cortical 
surface into the shape of another. This mapping not only 
matches overall cortical geometry, but matches the entire 
network of the 36 landmark curves with their counterparts 
in the target brain, and thus is a valid encoding of cortical 
variation. 

Spherical, Planar Maps of Cortex. Several simpler 
maps of the cortex are made to help calculate the 
transformation. Because each subject’s cortical model is 
created by deforming a spherical mesh [11,18,22], any point 
on the cortex maps to exactly one point on the sphere, and 
a spherical map of the cortex can be made which indexes 
sulcal landmarks in the normally folded brain surface. 
These spherical locations, indexed by two parameters, can 
also be mapped to a plane (Fig. 2; [3,15]). A flow field is 
then calculated that elastically warps one flat map onto the 
other (Fig. 2; or equivalently, one spherical map to the 
other). On the sphere, the parameter shift function u(r):Ω  
→ Ω , is given by the solution Fpq:r→r-u(r) to a curve-
driven warp in the spherical parametric space 
Ω=[0,2π)×[0,π) of the cortex [3,15]. For points r=(r,s) in the 
parameter space, a system of simultaneous partial 
differential equations can be written for the flow field u(r): 
 

L‡(u(r)) + F(r-u(r)) = 0, ∀r∈Ω , with u(r) = u0(r), 
∀r∈M0∪M1. (1) 

 
Here M0, M1 are sets of points and (sulcal or gyral) curves 
where displacement vectors u(r)=u0(r) matching 
corresponding anatomy across subjects are known. The 
flow behavior is modeled using equations derived from 
continuum mechanics, and these equations are governed 
by the Cauchy-Navier differential operator L = 
µ∇2+(λ+µ)∇(∇T•) with body force F (Thompson et al., 
1996, 1998, 1999; Grenander and Miller, 1998). The only 
difference is that L‡ is the covariant form of the differential 
operator L (for reasons explained in Footnote 1).  
 
Footnote 1: Covariant Field Equations. Since the 
cortex is not a developable surface [22], it cannot be given 
a parameterization whose metric tensor is uniform. As in 
fluid dynamics or general relativity applications, the 
intrinsic curvature of the solution domain can be taken into 
account when computing flow vector fields in the cortical 
parameter space, and mapping one mesh surface onto 
another. In the covariant tensor approach [4], correction 
terms (Christoffel symbols, ΓΓ i

jk) make the necessary 
adjustments for 



 
 

Figure 2. Computing Differences in Cortical Patterns. Cortical anatomy can be compared, for any pair of subjects (3D 
Models; top left), by computing the 3D deformation field that reconfigures one subject's cortex onto another (3D Matching 
Field, middle panel). In this mapping, gyral patterns must also be constrained to match their counterparts in the target brain. 
To do this, deformable surface extraction of the cortex provides a continuous inverse mapping from each subject’s cortex to a 
sphere or plane. A vector field u(r) in the parameter space then drives the network elements into register on the sphere (see 
spherical flow). The full mapping (top middle) can be recovered in 3D space as a displacement vector field that drives cortical 
points and regions in one brain into precise structural registration with their counterparts in the other brain. Tensor Maps 
(middle and lower left): Although these simple 2-parameter surfaces can serve as proxies for the cortex, different amounts of 
local dilation and contraction (encoded in the metric tensor of the mapping, gjk(r)) are required to transform the cortex into a 
simpler 2-parameter surface. These variations complicate the direct application of 2D regularization equations for matching 
their features. Using a covariant tensor approach (red box) the regularization operator L is replaced by its covariant form L*, in 
which correction terms (Christoffel symbols, ΓΓ i

jk) compensate for fluctuations in the metric tensor of the flattening procedure. 
This (1) makes the matching field invariant to the underlying parameterization (spherical or planar), and (2) eliminates 
confounding effects of metric distortions that occur during the flattening procedure. Right panels, (a)-(f): Gyral patterns can 
also be matched across a group of subjects to create average cortical surfaces. (a) shows a cortical flat map for the left 
hemisphere of one subject, with the average cortical pattern for the group overlaid (colored lines). (b) shows the result of 
warping the individual’s sulcal pattern into the average configuration for the group, using the covariant field equations. The 
3D cortical regions that map to these average locations are then recovered in each individual subject, as follows. A color code 
((c), Thompson and Toga, 1997) representing 3D cortical point locations (e) in this subject is convected along with the flow 
that drives the sulcal pattern into the average configuration for the group (d). Once this is done in all subjects, points on each 
individual’s cortex are recovered (f) that have the same relative location to the primary folding pattern in all subjects. 
Averaging of these corresponding points results in a crisp average cortex (Fig. 3(c), top panel). The transformation fields that 
map individuals onto the group average are stored and used to measure regional variability (Fig. 4). 
------- 
fluctuations in the metric tensor of the mapping procedure. 
In the partial differential equations (1), we replace L by the 
covariant differential operator L‡. In  L‡, all L’s partial 
derivatives are replaced with covariant derivatives. These 
covariant derivatives are defined with respect to the metric 
tensor of the surface domain where calculations are 
performed. The covariant derivative of a (contravariant) 
vector field, ui(x), is defined as ui

,k = ∂u j/∂xk + ΓΓ j
ik u

i where 
the Christoffel symbols of the second kind [25], ΓΓ j

ik, are 
computed from derivatives of the metric tensor 
components g jk(x):  
 

ΓΓ i
jk = (1/2) g il (∂g lj/∂xk+∂g lk/∂xj-∂g jk/∂xi ). (2) 

 

These correction terms are then used in the solution of the 
Dirichlet problem [26] to match one cortex with another. 
Note that a parameterization-invariant variational 
formulation could also be used to minimize metric 
distortion when mapping one surface to another. If P and 
Q are cortical  surfaces with metric tensors gjk(u

i) and 
h jk(ξα) in local coordinates u i and ξα (i, α=1,2), the Dirichlet 
energy of the mapping ξ(u) is defined as: E(ξ) = ∫P  e(ξ)(u) 
dP, where e(ξ)(u) = gij(u) ∂ξα(u)/∂u i ∂ξβ(u)/∂u j  hαβ(ξ(u)) and 
dP=(√det[g ij])du1du2. The Euler equations, whose solution 
ξα(u) minimizes the mapping energy, are: 
 

0 = L(ξi) = Σm=1 to 2 ∂/∂um [(√det[g ru]) Σ l=1 to 2 g
ml

ur ∂ξi/∂u l ] 
(i=1,2), 

 



 
 

 
  

[27]. The resulting (harmonic) map (1) minimizes the 
change in metric from one surface to the other, and (2) is 
again independent of the parameterizations (spherical or 
planar) used for each surface.  
----- 
Creating an Average Cortical Surface. The warping field 
deforming one cortex into gyral correspondence with 
another can also be used to create an average model of the 
cortex. To do this, all 36 gyral curves for all subjects are first 
transferred to the spherical parameter space. Next, each 
curve is uniformly re-parameterized to produce a regular 
curve of 100 points on the sphere whose corresponding 3D 
locations are uniformly spaced. A set of 36 average gyral 
curves for the group is created by vector averaging all point 
locations on each curve. This average curve template 
(curves in Fig. 2(b)) serves as the target for alignment of 
individual cortical patterns (cf. [24]). Each individual cortical 
pattern is transformed into the average curve configuration 
using a flow field within the parameter space (Fig. 2(a),(b)). 
By carrying a color code (that indexes 3D locations) along 
with the vector flow that aligns each individual with the 
average folding pattern, information can be recovered at a 
particular location in the average folding pattern (Fig. 2(d)) 
specifying the 3D cortical points mapping each subject to 
the average. This produces a new coordinate grid on a 
given subject’s cortex (Fig. 2(f)) in which particular grid-
points appear in the same location across subjects relative 
to the mean gyral pattern. By averaging these 3D positions 
across subjects, an average 3D cortical model can be 
constructed for the group (Fig. 3, right panels). The 
resulting mapping is guaranteed to average together all 
points falling on the same cortical locations across the set 
of brains, and ensures that corresponding features are 
averaged together (Fig. 3(c)). 
   Average Image Template Construction. High-
dimensional cortical transformations also permit the 
construction of a disease-specific image template with the 
average image intensity and geometry for the AD 
population (Fig. 3(c)). By averaging geometric and 
intensity features separately [2,29], the resulting brain 
template has well-resolved cortical features in their mean 
anatomic location. To produce an average template for the 
group, 9 brains were selected for which a set of 84 
anatomic surface models had been created [14]. An initial 
image template for the group was constructed by (1) using 
automated linear transformations [30] to align the MRI data 
with a randomly selected image, (2) intensity-averaging the 
aligned scans, and then (3) recursively re-registering the 
scans to the resulting average affine image. The resulting 
average image was adjusted to to align the MRI data with a 
randomly selected image, (2) intensity-averaging the 
aligned scans, and then (3) recursively re-registering the 
scans to the resulting average affine image. The resulting 
average image was adjusted to have the mean affine shape 
for the group [31]. Images and surface models were then 

linearly aligned to this template, and an average surface set 
was created for the group [14]. Displacement maps (Fig. 
3(e)) driving the surface anatomy of each subject into 
correspondence with the average surface set were then 
extended to the full volume with a 3D warping 

 
Figure 3. Average Brain Templates. (a) In a widely-used 
average brain image template (ICBM305) based on voxel-
wise intensity averaging of 305 young normal subjects’ 
scans [28], anatomical  features are not well-resolved at the 
cortex. Cortical variability is represented using probability 
clouds (top left) that describe the frequency of incidence 
for each gyrus at each stereotaxic voxel, after linear 
registration and voxel-by-voxel comparison. In an affine 
brain template (b), similarly constructed from Alzheimer’s 
disease patients’ scans, the cortical average is also poorly 
resolved. By contrast, anatomical features are highly 
resolved, even at the cortex, in the Continuum-
Mechanical Brain Template (c), which applies a 
continuum-mechanical transformation to each brain before 
intensity averaging. Scans are elastically reconfigured into 
a group mean configuration, using surface-based warping 
to match 84 surface models (including gyral pattern 
elements) across all subjects. Reconfigured scans are then 
averaged voxel-by-voxel, after intensity normalization, to 
produce a group image template with the average geometry 
and average image intensity for the group. Vector field 
transformations of extremely high spatial dimension (d),(e) 
are required to resolve cortical features, in their mean 
configuration, after scans are averaged together. 
------ 
algorithm based on surface-driven elasticity [3,4,11]. These 
warping fields reconfigured each subject’s 3D image into 
the average anatomic configuration for the group. By 
averaging the reconfigured images (after intensity 
normalization), a crisp image template was created to 
represent the group (Fig. 3(c)).  



 
 

 
  

Note the better-resolved cortical features in the average 
images after high-dimensional cortical registration. If 
desired, this AD-specific atlas can retain the coordinate 
matrix of the Talairach system (with the anterior commissure 
at (0,0,0)) while refining the gyral map of the Talairach atlas 
to encode the unique anatomy of the AD population. By 
explicitly computing matching fields that relate gyral 
patterns across subjects, a well-resolved and spatially 
consistent set of probabilistic anatomical models and 
average images can be generated to represent the average 
anatomy and its variation in a subpopulation. 
 
3   Results   
 
3D Cortical Variability. 3D displacement fields were 
recovered mapping each patient into gyrus-by-gyrus 
correspondence with the average cortex (Fig. 3(e)), after 
affine differences between each individual brain and the 
average template were factored out. Anatomic variability 
was then defined at each point on the average cortical 
surface as the root mean square (r.m.s.) magnitude of the 
3D displacement vectors, assigned to each point, in the 
surface maps driving individuals onto the group average 
[3,12-14]. A typical variability pattern (based on 20 
subjects) is visualized as a color-coded map in Fig. 4(a),(b). 
Overall, variability values rose sharply (Fig. 4(a),(b)) from 
4-5 mm in primary motor cortex to localized peaks of 
maximal variability in posterior perisylvian zones and 
superior frontal association cortex (16-18 mm). The regions 
of maximal variability, in temporo-parietal cortex, are areas 
of dramatic neuronal loss, early metabolic change, and 
perfusion deficits in mild to moderate AD.  This suggests 
that extreme caution is necessary when referring to 
activation foci and metabolic deficits in this important area 
using stereotaxic coordinates, unless a non-linear 
registration approach is employed, otherwise structural 
differences may be interpreted as functional differences. 
The overall patterns of variation corroborate recent 
findings based on a fine-scale volumetric parcellation of 
the cortex [33], and suggest a greater morphologic 
individuality in cortical regions that are phylogenetically 
more recent. 
      Tensor Maps of Directional Variation. Structures do 
not vary to the same degree in every coordinate direction 
[12], and even these directional biases vary by cortical 
system. The principal directions of anatomic variability in a 
group can be shown in a tensor map (Figs. 4(a)-(c)). The 
maps have two uses. First, they make it easier to detect 
anomalies, which may be small in magnitude but in specific 
and unusual directions [3]. Second, they significantly 
increase the information content of Bayesian priors used 
for automated structure extraction and identification [34-
37].  
      Population-Based Maps of Brain Asymmetry. 
Significant asymmetries in cortical organization become 

apparent in the average surface representations of 
anatomy for the group (Fig. 4(d)). The average Sylvian 
fissure terminates more posteriorly (by 10 mm; p < 0.0002) 
and is more horizontal on the left than on the right, 
corroborating 

 
 

Figure 4. Population-Based Maps of Cortical Variability 
and Asymmetry (N=20, Elderly Normals). Right (R) and 
left (L) hemisphere views show maps of 3D r.m.s. 
variability in cortical anatomy for 20 elderly normal 
subjects (all right handed, 10 males, 10 females). Residual 
variability in cortical patterning is shown after removing 
affine brain differences by linear transformation of the 
individual data to a group mean template (Fig. 3(c)). 
Ellipsoidal glyphs [(a)-(c)] indicate the principal directions 
of anatomical variation - they are most elongated along 
directions where anatomic variation is greatest across 
subjects. Each glyph represents the eigenvectors of the 
covariance tensor of the vector fields that map individual 
subjects onto their group average [3]. This covariance 
tensor determines the parameters of a multivariate 
Gaussian density for vector deviations at each point on 
the average cortical model [transparent glyphs, (c)]. 
Because gyral patterns constrain the mappings, the fields 
reflect variations in cortical organization at a more local 
level than can be achieved by only matching global 
cortical geometry. Note the elongated glyphs in anterior 
temporal cortex [(a)-(c)], and the very low variability (in 
any direction) in sensorimotor and inferior frontal areas. By 
better defining the parameters of allowable normal 
variations, the resulting information can be leveraged to 
distinguish normal from abnormal anatomical variants 
[3,32]. The magnitude of structural asymmetry in the brain 
is also clearly apparent (asymmetry map, N=20, (d)) in 
perisylvian cortex. The average right hemisphere cortical 
pattern is torqued forward  (d) relative to the same cortical 
elements in the left brain hemisphere.  
-------- 



 
 

 
  

earlier post mortem findings. In a previous study, we found 
Sylvian fissure asymmetry to be significantly greater in AD 
(p < 0.05) than in control subjects matched for age, gender 
and handedness [14].  
      To determine whether these asymmetry patterns were 
also evident subcortically, average models of the 
underlying lateral ventricles (Fig. 4) were made for 
Alzheimer’s patients and controls. As well as the 
prominent asymmetries of the occipital horn, disease-
related differences in average ventricular anatomy were 
clearly localized (Fig. 5). By contrast with conventional 
volumetric approaches which show a global ventricular 
enlargement in AD, the region of greatest disease-related 
enlargement is clearly localized to the occipital horn. 
Anatomical averaging therefore reveals specific features of 
cortical and ventricular organization that are not observed 
in individual representations due to their considerable 
cross-subject variability. 

 

 
 

Fig. 5. Population-Based Maps of Average Ventricular 
Anatomy in Normal Aging and Alzheimer's Disease. In 
patients and controls, 3D parametric surface meshes [12] 
were used to model 14 ventricular elements, and meshes 
representing each surface element were averaged by 
hemisphere in each group. An average model for 
Alzheimer’s patients (red; AD) is superimposed on an 
average model for matched normal controls (blue; NC). 
Mesh averaging reveals enlarged occipital horns in the 
Alzheimer's patients, and high stereotaxic variability in 
both groups. Extreme variability at the occipital horn tips 
also contrasts sharply with the stability of septal and 
temporal ventricular regions. A top view of these averaged 
surface meshes reveals localized asymmetry, variability, 
and displacement within and between groups. These 
subcortical asymmetries emerge only after averaging of 
anatomical maps in large groups of subjects.  
---------- 
 
4 Conclusion 
 

Encoding patterns of anatomical variation in diseased 
populations presents significant challenges. By presenting 
an atlasing scheme that treats intensity and geometric 
variation separately, we described the creation of well-
resolved image templates (Fig. 3(c)) and probabilistic 
models of anatomy (Figs. 4,5) that reflect the average 
morphology of a group. The continual refinement of 

anatomic templates ultimately will enable deformation-
based morphometry in large image databases [3,38], and 
shows promise in linking imaging findings with 
demographic, genetic, and therapeutic parameters [6]. 
Atlased data on anatomic variability can also act as 
Bayesian prior information to guide algorithms for 
automated image registration and labeling [34,37,38]. The 
resulting atlases are expandable, and may be stratified into 
subpopulations according to clinical, demographic or 
genetic criteria. 

We also described approaches for creating and 
averaging brain models. These techniques produce 
statistical maps of group differences, abnormalities, and 
patterns of variation and asymmetry. These maps and 
models are key components of disease-specific brain 
atlases. Additional registration algorithms also transfer 
post mortem maps into the atlas, to correlate them with 
functional and metabolic data. The result is a multi-
modality atlas that relates cognitive and functional 
measures with the cellular and pathologic hallmarks of the 
disease (Fig. 1; [9,10]).  

As well as disease-specific atlases reflecting brain 
structure in dementia [5], research is underway to build a 
population-based brain atlas in schizophrenia based on 
large cohorts of medicated and first episode patients, as 
well as twins discordant for the disease [32]. Dynamic 
brain atlases are also being built to retain probabilistic 
information on growth rates in development and 
degeneration [6,7]. Refinement of these atlas systems to 
support dynamic and disease-specific data should 
generate an exciting framework to investigate variations in 
brain structure and function in large human populations. 
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